Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Neuro Oncol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567448

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) obtained by noninvasive liquid biopsy from patient blood can serve as biomarkers. Here, we investigated the potential of circulating plasma EVs to serve as an indicator in the diagnosis, prognosis and treatment response of glioblastoma patients. METHODS: Plasma samples were collected from glioblastoma patients at multiple timepoints before and after surgery. EV concentrations were measured by nanoparticle tracking analysis and imaging flow cytometry. Tumor burden and edema were quantified by 3D reconstruction. EVs and tumors were further monitored in glioma-bearing mice. RESULTS: Glioblastoma patients displayed a 5.5-fold increase in circulating EVs compared to healthy donors (p < 0.0001). Patients with higher EV levels had a significantly shorter overall survival and progression-free survival than patients with lower levels, and the plasma EV concentration was an independent prognostic parameter for overall survival. EV levels correlated with the extent of peritumoral FLAIR hyperintensity but not with the size of the contrast-enhancing tumor, and similar findings were obtained in mice. Postoperatively, EV concentrations decreased rapidly back to normal levels, and the magnitude of the decline was associated with the extent of tumor resection. EV levels remained low during stable disease, but increased again upon tumor recurrence. In some patients, EV resurgence preceded the magnetic resonance imaging (MRI) detectability of tumor relapse. CONCLUSIONS: Our findings suggest that leakiness of the blood-brain barrier may primarily be responsible for the high circulating EV concentrations in glioblastoma patients. Elevated EVs reflect tumor presence, and their quantification may thus be valuable in assessing disease activity.

2.
Adv Virus Res ; 116: 45-88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37524482

RESUMEN

Individual functional viral morphogenesis events are often dynamic, short, and infrequent and might be obscured by other pathways and dead-end products. Volumetric live cell imaging has become an essential tool for studying viral morphogenesis events. It allows following entire dynamic processes while providing functional evidence that the imaged process is involved in viral production. Moreover, it allows to capture many individual events and allows quantitative analysis. Finally, the correlation of volumetric live-cell data with volumetric electron microscopy (EM) can provide crucial insights into the ultrastructure and mechanisms of viral morphogenesis events. Here, we provide an overview and discussion of suitable imaging methods for volumetric correlative imaging of viral morphogenesis and frame them in a historical summary of their development.


Asunto(s)
Virus , Microscopía Electrónica , Morfogénesis , Virus/ultraestructura
3.
PLoS Pathog ; 18(8): e1010575, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35925870

RESUMEN

Human Cytomegalovirus (HCMV) can infect a variety of cell types by using virions of varying glycoprotein compositions. It is still unclear how this diversity is generated, but spatio-temporally separated envelopment and egress pathways might play a role. So far, one egress pathway has been described in which HCMV particles are individually enveloped into small vesicles and are subsequently exocytosed continuously. However, some studies have also found enveloped virus particles inside multivesicular structures but could not link them to productive egress or degradation pathways. We used a novel 3D-CLEM workflow allowing us to investigate these structures in HCMV morphogenesis and egress at high spatio-temporal resolution. We found that multiple envelopment events occurred at individual vesicles leading to multiviral bodies (MViBs), which subsequently traversed the cytoplasm to release virions as intermittent bulk pulses at the plasma membrane to form extracellular virus accumulations (EVAs). Our data support the existence of a novel bona fide HCMV egress pathway, which opens the gate to evaluate divergent egress pathways in generating virion diversity.


Asunto(s)
Citomegalovirus , Ensamble de Virus , Citoplasma/metabolismo , Humanos , Virión
4.
Viruses ; 14(7)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35891503

RESUMEN

Nipah virus (NiV) is a zoonotic paramyxovirus with a fatality rate of up to 92% in humans. While several pathogenic mechanisms used by NiV to counteract host immune defense responses have been described, all of the processes that take place in cells during infection are not fully characterized. Here, we describe the formation of ordered intracellular structures during NiV infection. We observed that these structures are formed specifically during NiV infection, but not with other viruses from the same Mononegavirales order (namely Ebola virus) or from other orders such as Bunyavirales (Junín virus). We also determined the kinetics of the appearance of these structures and their cellular localization at the cellular periphery. Finally, we confirmed the presence of these NiV-specific ordered structures using structured illumination microscopy (SIM), as well as their localization by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and correlative light and electron microscopy (CLEM). Herein, we describe a cytopathogenic mechanism that provides a new insight into NiV biology. These newly described ordered structures could provide a target for novel antiviral approaches.


Asunto(s)
Ebolavirus , Infecciones por Henipavirus , Virus Nipah , Paramyxovirinae , Antivirales , Humanos , Virus Nipah/fisiología
5.
Neuro Oncol ; 24(12): 2078-2090, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551407

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) play an important role in cell-cell communication, and tumor-derived EVs circulating in patient blood can serve as biomarkers. Here, we investigated the potential role of plasma EVs in meningioma patients for tumor detection and determined whether EVs secreted by meningioma cells reflect epigenetic, genomic, and proteomic alterations of original tumors. METHODS: EV concentrations were quantified in patient plasma (n = 46). Short-term meningioma cultures were established (n = 26) and secreted EVs were isolated. Methylation and copy number profiling was performed using 850k arrays, and mutations were identified by targeted gene panel sequencing. Differential quantitative mass spectrometry was employed for proteomic analysis. RESULTS: Levels of circulating EVs were elevated in meningioma patients compared to healthy individuals, and the plasma EV concentration correlated with malignancy grade and extent of peritumoral edema. Postoperatively, EV counts dropped to normal levels, and the magnitude of the postoperative decrease was associated with extent of tumor resection. Methylation profiling of EV-DNA allowed correct tumor classification as meningioma in all investigated cases, and accurate methylation subclass assignment in almost all cases. Copy number variations present in tumors, as well as tumor-specific mutations were faithfully reflected in meningioma EV-DNA. Proteomic EV profiling did not permit original tumor identification but revealed tumor-associated proteins that could potentially be utilized to enrich meningioma EVs from biofluids. CONCLUSIONS: Elevated EV levels in meningioma patient plasma could aid in tumor diagnosis and assessment of treatment response. Meningioma EV-DNA mirrors genetic and epigenetic tumor alterations and facilitates molecular tumor classification.


Asunto(s)
Vesículas Extracelulares , Neoplasias Meníngeas , Meningioma , Humanos , Proteómica/métodos , Meningioma/diagnóstico , Meningioma/genética , Meningioma/metabolismo , Variaciones en el Número de Copia de ADN , Biomarcadores de Tumor/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884837

RESUMEN

The human adenovirus type 5 (HAdV5) infects epithelial cells of the upper and lower respiratory tract. The virus causes lysis of infected cells and thus enables spread of progeny virions to neighboring cells for the next round of infection. The mechanism of adenovirus virion egress across the nuclear barrier is not known. The human adenovirus death protein (ADP) facilitates the release of virions from infected cells and has been hypothesized to cause membrane damage. Here, we set out to answer whether ADP does indeed increase nuclear membrane damage. We analyzed the nuclear envelope morphology using a combination of fluorescence and state-of-the-art electron microscopy techniques, including serial block-face scanning electron microscopy and electron cryo-tomography of focused ion beam-milled cells. We report multiple destabilization phenotypes of the nuclear envelope in HAdV5 infection. These include reduction of lamin A/C at the nuclear envelope, large-scale membrane invaginations, alterations in double membrane separation distance and small-scale membrane protrusions. Additionally, we measured increased nuclear membrane permeability and detected nuclear envelope lesions under cryoconditions. Unexpectedly, and in contrast to previous hypotheses, ADP did not have an effect on lamin A/C reduction or nuclear permeability.


Asunto(s)
Proteínas E3 de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Membrana Nuclear/metabolismo , Proteínas E3 de Adenovirus/genética , Línea Celular Tumoral , Humanos , Lamina Tipo A/metabolismo , Microscopía Electrónica de Rastreo , Permeabilidad
7.
Nat Commun ; 12(1): 5911, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625545

RESUMEN

Immune cells at sites of inflammation are continuously activated by local antigens and cytokines, and regulatory mechanisms must be enacted to control inflammation. The stepwise hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 generates adenosine, a potent immune suppressor. Here we report that human effector CD8 T cells contribute to adenosine production by releasing CD73-containing extracellular vesicles upon activation. These extracellular vesicles have AMPase activity, and the resulting adenosine mediates immune suppression independently of regulatory T cells. In addition, we show that extracellular vesicles isolated from the synovial fluid of patients with juvenile idiopathic arthritis contribute to T cell suppression in a CD73-dependent manner. Our results suggest that the generation of adenosine upon T cell activation is an intrinsic mechanism of human effector T cells that complements regulatory T cell-mediated suppression in the inflamed tissue. Finally, our data underscore the role of immune cell-derived extracellular vesicles in the control of immune responses.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Linfocitos T CD8-positivos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Ligadas a GPI/metabolismo , Terapia de Inmunosupresión , 5'-Nucleotidasa/genética , Adenosina Trifosfato , Animales , Autoinmunidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Vesículas Extracelulares/inmunología , Humanos , Inflamación , Activación de Linfocitos , Ratones , Linfocitos T , Linfocitos T Reguladores/inmunología
8.
J Hepatol ; 75(1): 55-63, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33484776

RESUMEN

BACKGROUND & AIMS: Hepatitis E virus (HEV) infections are prevalent worldwide. Various viruses have been detected in the ejaculate and can outlast the duration of viremia, indicating replication beyond the blood-testis barrier. HEV replication in diverse organs, however, is still widely misunderstood. We aimed to determine the occurrence, features and morphology of HEV in the ejaculate. METHODS: The presence of HEV in testis was assessed in 12 experimentally HEV-genotype 3-infected pigs. We further tested ejaculate, urine, stool and blood from 3 chronically HEV genotype 3-infected patients and 6 immunocompetent patients with acute HEV infection by HEV-PCR. Morphology and genomic characterization of HEV particles from various human compartments were determined by HEV-PCR, density gradient measurement, immune-electron microscopy and genomic sequencing. RESULTS: In 2 of the 3 chronically HEV-infected patients, we observed HEV-RNA (genotype 3c) in seminal plasma and semen with viral loads >2 logs higher than in the serum. Genomic sequencing showed significant differences between viral strains in the ejaculate compared to stool. Under ribavirin-treatment, HEV shedding in the ejaculate continued for >9 months following the end of viremia. Density gradient measurement and immune-electron microscopy characterized (enveloped) HEV particles in the ejaculate as intact. CONCLUSIONS: The male reproductive system was shown to be a niche of HEV persistence in chronic HEV infection. Surprisingly, sequence analysis revealed distinct genetic HEV variants in the stool and serum, originating from the liver, compared to variants in the ejaculate originating from the male reproductive system. Enveloped HEV particles in the ejaculate did not morphologically differ from serum-derived HEV particles. LAY SUMMARY: Enveloped hepatitis E virus particles could be identified by PCR and electron microscopy in the ejaculate of immunosuppressed chronically infected patients, but not in immunocompetent experimentally infected pigs or in patients with acute self-limiting hepatitis E.


Asunto(s)
Heces/virología , Virus de la Hepatitis E , Hepatitis E , Inmunocompetencia , Infección Persistente , Semen/virología , Animales , Eyaculación , Genoma Viral , Pruebas Hematológicas/métodos , Hepatitis E/sangre , Hepatitis E/inmunología , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/aislamiento & purificación , Humanos , Huésped Inmunocomprometido , Masculino , Infección Persistente/inmunología , Infección Persistente/virología , Análisis de Semen/métodos , Porcinos , Urinálisis/métodos , Envoltura Viral , Compartimentos de Replicación Viral
9.
Neuro Oncol ; 23(7): 1087-1099, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508126

RESUMEN

BACKGROUND: Genome-wide DNA methylation profiling has recently been developed into a tool that allows tumor classification in central nervous system tumors. Extracellular vesicles (EVs) are released by tumor cells and contain high molecular weight DNA, rendering EVs a potential biomarker source to identify tumor subgroups, stratify patients and monitor therapy by liquid biopsy. We investigated whether the DNA in glioblastoma cell-derived EVs reflects genome-wide tumor methylation and mutational profiles and allows noninvasive tumor subtype classification. METHODS: DNA was isolated from EVs secreted by glioblastoma cells as well as from matching cultured cells and tumors. EV-DNA was localized and quantified by direct stochastic optical reconstruction microscopy. Methylation and copy number profiling was performed using 850k arrays. Mutations were identified by targeted gene panel sequencing. Proteins were differentially quantified by mass spectrometric proteomics. RESULTS: Genome-wide methylation profiling of glioblastoma-derived EVs correctly identified the methylation class of the parental cells and original tumors, including the MGMT promoter methylation status. Tumor-specific mutations and copy number variations (CNV) were detected in EV-DNA with high accuracy. Different EV isolation techniques did not affect the methylation profiling and CNV results. DNA was present inside EVs and on the EV surface. Proteome analysis did not allow specific tumor identification or classification but identified tumor-associated proteins that could potentially be useful for enriching tumor-derived circulating EVs from biofluids. CONCLUSIONS: This study provides proof of principle that EV-DNA reflects the genome-wide methylation, CNV, and mutational status of glioblastoma cells and enables their molecular classification.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , ADN/metabolismo , Variaciones en el Número de Copia de ADN , Metilación de ADN , Vesículas Extracelulares/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Metilación
10.
Mol Metab ; 43: 101114, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166742

RESUMEN

OBJECTIVE: The lack of effective treatments against diabetic sensorimotor polyneuropathy demands the search for new strategies to combat or prevent the condition. Because reduced magnesium and increased methylglyoxal levels have been implicated in the development of both type 2 diabetes and neuropathic pain, we aimed to assess the putative interplay of both molecules with diabetic sensorimotor polyneuropathy. METHODS: In a cross-sectional study, serum magnesium and plasma methylglyoxal levels were measured in recently diagnosed type 2 diabetes patients with (n = 51) and without (n = 184) diabetic sensorimotor polyneuropathy from the German Diabetes Study baseline cohort. Peripheral nerve function was assessed using nerve conduction velocity and quantitative sensory testing. Human neuroblastoma cells (SH-SY5Y) and mouse dorsal root ganglia cells were used to characterize the neurotoxic effect of methylglyoxal and/or neuroprotective effect of magnesium. RESULTS: Here, we demonstrate that serum magnesium concentration was reduced in recently diagnosed type 2 diabetes patients with diabetic sensorimotor polyneuropathy and inversely associated with plasma methylglyoxal concentration. Magnesium, methylglyoxal, and, importantly, their interaction were strongly interrelated with methylglyoxal-dependent nerve dysfunction and were predictive of changes in nerve function. Magnesium supplementation prevented methylglyoxal neurotoxicity in differentiated SH-SY5Y neuron-like cells due to reduction of intracellular methylglyoxal formation, while supplementation with the divalent cations zinc and manganese had no effect on methylglyoxal neurotoxicity. Furthermore, the downregulation of mitochondrial activity in mouse dorsal root ganglia cells and consequently the enrichment of triosephosphates, the primary source of methylglyoxal, resulted in neurite degeneration, which was completely prevented through magnesium supplementation. CONCLUSIONS: These multifaceted findings reveal a novel putative pathophysiological pathway of hypomagnesemia-induced carbonyl stress leading to neuronal damage and merit further investigations not only for diabetic sensorimotor polyneuropathy but also other neurodegenerative diseases associated with magnesium deficiency and impaired energy metabolism.


Asunto(s)
Magnesio/metabolismo , Polineuropatías/metabolismo , Piruvaldehído/metabolismo , Animales , Estudios Transversales , Diabetes Mellitus/metabolismo , Neuropatías Diabéticas/etiología , Metabolismo Energético , Femenino , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Neuronas/metabolismo , Polineuropatías/fisiopatología , Corteza Sensoriomotora/metabolismo
11.
Nat Microbiol ; 5(2): 331-342, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31844296

RESUMEN

Viruses manipulate cellular signalling by inducing the degradation of crucial signal transducers, usually via the ubiquitin-proteasome pathway. Here, we show that the murine cytomegalovirus (Murid herpesvirus 1) M45 protein induces the degradation of two cellular signalling proteins, the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) essential modulator (NEMO) and the receptor-interacting protein kinase 1 (RIPK1), via a different mechanism: it induces their sequestration as insoluble protein aggregates and subsequently facilitates their degradation by autophagy. Aggregation of target proteins requires a distinct sequence motif in M45, which we termed 'induced protein aggregation motif'. In a second step, M45 recruits the retromer component vacuolar protein sorting 26B (VPS26B) and the microtubule-associated protein light chain 3 (LC3)-interacting adaptor protein TBC1D5 to facilitate degradation of aggregates by selective autophagy. The induced protein aggregation motif is conserved in M45-homologous proteins of several human herpesviruses, including herpes simplex virus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, but is only partially conserved in the human cytomegalovirus UL45 protein. We further show that the HSV-1 ICP6 protein induces RIPK1 aggregation and degradation in a similar fashion to M45. These data suggest that induced protein aggregation combined with selective autophagy of aggregates (aggrephagy) represents a conserved viral immune-evasion mechanism.


Asunto(s)
Herpesviridae/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Animales , Autofagia/inmunología , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Células Cultivadas , Células HEK293 , Herpesviridae/metabolismo , Herpesviridae/patogenicidad , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidad , Interacciones Microbiota-Huesped/inmunología , Humanos , Evasión Inmune , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Muromegalovirus/inmunología , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidad , Agregado de Proteínas/inmunología , Proteolisis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/inmunología , Ribonucleótido Reductasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
12.
Cell Microbiol ; 21(9): e13046, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31099152

RESUMEN

The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.


Asunto(s)
Autofagosomas/microbiología , Células Epiteliales/microbiología , Yersinia enterocolitica/patogenicidad , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Muerte Celular , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células HeLa , Interacciones Microbiota-Huesped , Humanos , Lisosomas/metabolismo , Lisosomas/microbiología , Lisosomas/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Vacuolas/ultraestructura , Yersinia enterocolitica/crecimiento & desarrollo , Yersinia enterocolitica/metabolismo
13.
J Extracell Vesicles ; 8(1): 1588555, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949309

RESUMEN

Cells release heterogeneous nano-sized vesicles either as exosomes, being derived from endosomal compartments, or through budding from the plasma membrane as so-called microvesicles, commonly referred to as extracellular vesicles (EVs). EVs are known for their important roles in mammalian physiology and disease pathogenesis and provide a potential biomarker source in cancer patients. EVs are generally often analysed in bulk using Western blotting or by bead-based flow-cytometry or, with limited parameters, through nanoparticle tracking analysis. Due to their small size, single EV analysis is technically highly challenging. Here we demonstrate imaging flow cytometry (IFCM) to be a robust, multiparametric technique that allows analysis of single EVs and the discrimination of distinct EV subpopulations. We used IFCM to analyse the tetraspanin (CD9, CD63, CD81) surface profiles on EVs from human and murine cell cultures as well as plasma samples. The presence of EV subpopulations with specific tetraspanin profiles suggests that EV-mediated cellular responses are tightly regulated and dependent on cell environment. We further demonstrate that EVs with double positive tetraspanin expression (CD63+/CD81+) are enriched in cancer cell lines and patient plasma samples. In addition, we used IFCM to detect tumour-specific GFP-labelled EVs in the blood of mice bearing syngeneic intracerebral gliomas, indicating that this technique allows unprecedented disease modelling. In summary, our study highlights the heterogeneous and adaptable nature of EVs according to their marker profile and demonstrates that IFCM facilitates multiparametric phenotyping of EVs not only in vitro but also in patient plasma at a single EV level, with the potential for future functional studies and clinically relevant applications. Abbreviation: EDTA = ethylenediamine tetraacetic acid.

14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1041-1056, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885363

RESUMEN

The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum-derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids. While the amount of neutral lipids and lipid droplet morphology were unchanged, membrane lipids, especially cholesterol and phospholipids, accumulated in the microsomal fraction in HCV-infected cells. In addition, HCV-infected cells had a higher relative abundance of phosphatidylcholines and triglycerides with longer fatty acyl chains and a strikingly increased utilization of C18 fatty acids, most prominently oleic acid (FA [18:1]). Accordingly, depletion of fatty acid elongases and desaturases impaired HCV replication. Moreover, the analysis of free fatty acids revealed increased levels of polyunsaturated fatty acids (PUFAs) caused by HCV infection. Interestingly, inhibition of the PUFA synthesis pathway via knockdown of the rate-limiting Δ6-desaturase enzyme or by treatment with a high dose of a small-molecule inhibitor impaired viral progeny production, indicating that elevated PUFAs are needed for virion morphogenesis. In contrast, pretreatment with low inhibitor concentrations promoted HCV translation and/or early RNA replication. Taken together our results demonstrate the complex remodeling of the host cell lipid metabolism induced by HCV to enhance both virus replication and progeny production.


Asunto(s)
Hepacivirus/metabolismo , Hepatocitos/metabolismo , Interacciones Huésped-Patógeno , Metabolismo de los Lípidos/genética , Metaboloma , Virión/metabolismo , Replicación Viral/fisiología , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Línea Celular Tumoral , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Ácido Graso Desaturasas/antagonistas & inhibidores , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica , Hepacivirus/crecimiento & desarrollo , Hepatocitos/química , Hepatocitos/virología , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/virología , Microsomas/metabolismo , Microsomas/virología , Ácido Oléico/metabolismo , Fosfatidilcolinas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Triglicéridos/metabolismo , Virión/crecimiento & desarrollo , Ensamble de Virus/fisiología
15.
J Phys Condens Matter ; 30(6): 064006, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29282349

RESUMEN

Noroviruses are the main cause of viral gastroenteritis with new variants emerging frequently. There are three norovirus genogroups infecting humans. These genogroups are divided based on the sequence of their major capsid protein, which is able to form virus-like particles (VLPs) when expressed recombinantly. VLPs of the prototypical GI.1 Norwalk virus are known to disassemble into specific capsid protein oligomers upon alkaline treatment. Here, native mass spectrometry and electron microscopy on variants of GI.1 and of GII.17 were performed, revealing differences in terms of stability between these groups. Beyond that, these experiments indicate differences even between variants within a genotype. The capsid stability was monitored in different ammonium acetate solutions varying both in ionic strength and pH. The investigated GI.1 West Chester isolate showed comparable disassembly profiles to the previously studied GI.1 Norwalk virus isolate. However, differences were observed with the West Chester being more sensitive to alkaline pH. In stark contrast to that, capsids of the variant belonging to the currently prevalent genogroup GII were stable in all tested conditions. Both variants formed smaller capsid particles already at neutral pH. Certain amino acid substitutions in the S domain of West Chester relative to the Norwalk virus potentially result in the formation of these T = 1 capsids.

16.
Cell Host Microbe ; 22(4): 519-530.e3, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29024644

RESUMEN

Neutrophils represent the main infected cell population in the lungs of active tuberculosis patients. Efficient removal of infected and dying neutrophils is required to protect the surrounding tissue from bioactive neutrophil molecules and subsequent pathological sequelae. While the removal of apoptotic M. tuberculosis (Mtb)-infected cells, or efferocytosis, is considered beneficial for host defense, little is known about Mtb-infected necrotic neutrophils. We found that Mtb induces necrosis of human neutrophils in an ESX-1-dependent manner, and neutrophil-produced reactive oxygen species (ROS) drive this necrosis. Neutrophil necrosis was required for Mtb growth after uptake of infected neutrophils by human macrophages. Pharmacological inhibition of ROS production could prevent necrosis and restore the capability of macrophages to control Mtb growth, thereby identifying a potential host-directed therapy target. Taken together, necrosis represents the starting point for a vicious cycle including the uptake of infected necrotic cells by other phagocytes, Mtb growth therein, and sustained infection.


Asunto(s)
Macrófagos/metabolismo , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Neutrófilos/microbiología , Fagocitosis , Adolescente , Adulto , Anciano , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Apoptosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cocultivo , Humanos , Macrófagos/microbiología , Persona de Mediana Edad , Mycobacterium tuberculosis/genética , Necrosis/microbiología , Necrosis/patología , Neutrófilos/patología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual
17.
PLoS One ; 12(8): e0180407, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28771481

RESUMEN

BACKGROUND: The aim of the study was to quantify atherosclerotic plaque burden by volumetric assessment and T1 relaxivity measurement at 7T MRI using Gadospin F (GDF) in comparison to en face based measurements. METHODS AND RESULTS: 9-weeks old ApoE-/- (n = 5 for each group) and wildtype mice (n = 5) were set on high fat diet (HFD). Progression group received MRI at 9, 13, 17 and 21 weeks after HFD initiation. Regression group was reswitched to chow diet (CD) after 13 weeks HFD and monitored with MRI for 12 weeks. MRI was performed before and two hours after iv injection of GDF (100 µmol/kg) at 7T (Clinscan, Bruker) acquiring a 3D inversion recovery gradient echo sequence and T1 Mapping using Saturation Recovery sequences. Subsequently, aortas were prepared for en face analysis using confocal microscopy. Total plaque volume (TPV) and T1 relaxivity were estimated using ImageJ (V. 1.44p, NIH, USA). 2D and 3D en face analysis showed a strong and exponential increase of plaque burden over time, while plaque burden in regression group was less pronounced. Correspondent in vivo MRI measurements revealed a more linear increase of TPV and T1 relaxivity for regression group. A significant correlation was observed between 2D and 3D en face analysis (r = 0.79; p<0.001) as well as between 2D / 3D en face analysis and MRI (r = 0.79; p<0.001; r = 0.85; p<0.001) and delta R1 (r = 0.79; p<0.001; r = 0.69; p<0.01). CONCLUSION: GDF-enhanced in vivo MRI is a powerful non-invasive imaging technique in mice allowing for reliable estimation of atherosclerotic plaque burden, monitoring of disease progression and regression in preclinical studies.


Asunto(s)
Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Técnicas de Inactivación de Genes , Imagen por Resonancia Magnética/métodos , Placa Aterosclerótica/diagnóstico por imagen , Animales , Lípidos/sangre , Ratones , Placa Aterosclerótica/sangre , Placa Aterosclerótica/genética
18.
Int J Mol Sci ; 18(6)2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28608812

RESUMEN

Adipocytes are master regulators of energy homeostasis. Although the contributions of classical brown and white adipose tissue (BAT and WAT, respectively) to glucose and fatty acid metabolism are well characterized, the metabolic role of adipocytes in bone marrow remains largely unclear. Here, we quantify bone fatty acid metabolism and its contribution to systemic nutrient handling in mice. Whereas in parts of the skeleton the specific amount of nutrients taken-up from the circulation was lower than in other metabolically active tissues such as BAT or liver, the overall contribution of the skeleton as a whole organ was remarkable, placing it among the top organs involved in systemic glucose as well as fatty acid clearance. We show that there are considerable site-specific variations in bone marrow fatty acid composition throughout the skeleton and that, especially in the tibia, marrow fatty acid profiles resemble classical BAT and WAT. Using a mouse model lacking lipoprotein lipase (LPL), a master regulator of plasma lipid turnover specifically in adipocytes, we show that impaired fatty acid flux leads to reduced amounts of dietary essential fatty acids while there was a profound increase in de novo produced fatty acids in both bone marrow and cortical bone. Notably, these changes in fatty acid profiles were not associated with any gross skeletal phenotype. These results identify LPL as an important regulator of fatty acid transport to skeletal compartments and demonstrate an intricate functional link between systemic and skeletal fatty acid and glucose metabolism.


Asunto(s)
Tejido Adiposo/metabolismo , Huesos/metabolismo , Ácidos Grasos/metabolismo , Lipoproteína Lipasa/metabolismo , Adipocitos/enzimología , Adipocitos/metabolismo , Tejido Adiposo/enzimología , Animales , Femenino , Glucosa/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL
19.
PLoS Pathog ; 13(2): e1006217, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28192531

RESUMEN

Cells employ active measures to restrict infection by pathogens, even prior to responses from the innate and humoral immune defenses. In this context selective autophagy is activated upon pathogen induced membrane rupture to sequester and deliver membrane fragments and their pathogen contents for lysosomal degradation. Adenoviruses, which breach the endosome upon entry, escape this fate by penetrating into the cytosol prior to autophagosome sequestration of the ruptured endosome. We show that virus induced membrane damage is recognized through Galectin-8 and sequesters the autophagy receptors NDP52 and p62. We further show that a conserved PPxY motif in the viral membrane lytic protein VI is critical for efficient viral evasion of autophagic sequestration after endosomal lysis. Comparing the wildtype with a PPxY-mutant virus we show that depletion of Galectin-8 or suppression of autophagy in ATG5-/- MEFs rescues infectivity of the PPxY-mutant virus while depletion of the autophagy receptors NDP52, p62 has only minor effects. Furthermore we show that wildtype viruses exploit the autophagic machinery for efficient nuclear genome delivery and control autophagosome formation via the cellular ubiquitin ligase Nedd4.2 resulting in reduced antigenic presentation. Our data thus demonstrate that a short PPxY-peptide motif in the adenoviral capsid permits multi-layered viral control of autophagic processes during entry.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Autofagia/fisiología , Proteínas de la Cápside/metabolismo , Galectinas/metabolismo , Internalización del Virus , Adenoviridae , Infecciones por Adenovirus Humanos/inmunología , Secuencias de Aminoácidos , Animales , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión
20.
PLoS One ; 11(9): e0163665, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27684368

RESUMEN

The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...